Note

Determination of Spherical Bessel's Functions of an Order Larger than the Argument

The ideas developed in Section 6 of Ref. [1] for the study of the behavior of $j_{L}(\rho)$ and $n_{L}(\rho)$ at the origin and for $L \gg \rho$ suggest a direct determination of these functions for $L \gg \rho$.

Consider the radial equation

$$
\begin{equation*}
\left[\frac{d^{2}}{d \rho^{2}}+\left(1-\frac{L(L+1)}{\rho^{2}}\right)\right] u_{L}(\rho)=0 \tag{1}
\end{equation*}
$$

of which

$$
\begin{equation*}
f_{L}(\rho)=\rho j_{L}(\rho), \quad g_{L}(\rho)=\rho n_{L}(\rho) \tag{2}
\end{equation*}
$$

are respectively the regular and the irregular solutions. For $L \gg \rho$ define $\alpha_{L}(\rho)$ and $\beta_{L}(\rho)$ by the equations

$$
\begin{equation*}
f_{L}(\rho)=\frac{\rho^{L+1}}{(2 L+1)!!} \exp \left[\alpha_{L}(\rho)\right], \quad g_{L}(\rho)=\frac{(2 L+1)!!}{2 L+1}\left(\frac{1}{\rho}\right)^{L} \exp \left[\beta_{L}(\rho)\right] \tag{3}
\end{equation*}
$$

and substitute $f_{L}(\rho)$ and $g_{L}(\rho)$ into (1). One has

$$
\begin{array}{r}
\frac{d^{2} \alpha_{L}}{d \rho^{2}}+\left(\frac{d \alpha_{L}}{d \rho}\right)^{2}+\frac{2(L+1)}{\rho} \frac{d \alpha_{L}}{d \rho}+1=0 \\
\frac{d^{2} \beta_{L}}{d \rho^{2}}+\left(\frac{d \beta_{L}}{d \rho}\right)^{2}-\frac{2 L}{\rho} \frac{d \beta_{L}}{d \rho}+1=0 . \tag{4.b}
\end{array}
$$

Nonlinear differential Eqs. (4) show that $\alpha_{L}(\rho)$ and $\beta_{L}(\rho)$ are even functions of ρ. Take, then, the developments

$$
\begin{align*}
& \frac{d \alpha_{L}}{d \rho}=\sum_{n=0}^{\infty} a_{n} \rho^{2 n+1} \tag{5.a}\\
& \frac{d \beta_{L}}{d \rho}=\sum_{n=0}^{\infty} b_{n} \rho^{2 n-1} \tag{5.b}
\end{align*}
$$

and substitute (5.a) and (5.b) respectively, into (4.a) and (4.b). One has, by equating to zero the coefficients of the different powers of ρ in (4.a) and (4.b), the recurrence relations for the $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$

$$
\begin{gather*}
a_{0}=-1 /(2 L+3) \tag{6.a}\\
{[2(L+n)+3] a_{n}+\sum_{k=0}^{n-1} a_{k} \cdot a_{n-k-1}=0} \tag{6.b}
\end{gather*}
$$

and

$$
\begin{gather*}
b_{0}=1 /(2 L-1) \tag{7.a}\\
{[2(L-n)-1] b_{n}-\sum_{k=0}^{n-1} b_{k} b_{n-k-1}=0} \tag{7.b}
\end{gather*}
$$

Thus, putting the integrating constants equal to zero, one has for $\alpha_{L}(\rho)$ and $\beta_{L}(\rho)$,

$$
\begin{align*}
\alpha_{L}(\rho)= & -\frac{\rho^{2}}{2(2 L+3)}-\frac{\rho^{4}}{4(2 L+5)(2 L+3)^{2}} \\
& -\frac{\rho^{6}}{3(2 L+7)(2 L+5)(2 L+3)^{3}}-\cdots \\
\beta_{L}(\rho)= & \frac{\rho^{2}}{2(2 L-1)}+\frac{\rho^{4}}{4(2 L-3)(2 L-1)^{2}} \\
& +\frac{\rho^{6}}{3(2 L-5)(2 L-3)(2 L-1)^{3}}+\cdots \tag{8.b}
\end{align*}
$$

The series (8) give to $j_{L}(\rho)$ and $n_{L}(\rho)$ the correct behavior at the origin and for $L \gg \rho$, if (2) and (3) are taken into account (see Ref. [1]).

It is worth noting that the developments (8) for $\alpha_{L}(\rho)$ and $\beta_{L}(\rho)$ are series absolutely convergent for given values of ρ and L.

Take the series for $d \alpha_{L} / d \rho$ and consider a new set of coefficients $\left\{a_{n}{ }^{\prime}\right\}$ related to the $\left\{a_{n}\right\}$ by the definitions

$$
\begin{equation*}
a_{n}=a_{n}{ }^{\prime} \sigma^{n+1}, \quad n=0,1, \ldots \tag{9}
\end{equation*}
$$

σ being a constant to be specified below. Introducing these relations in (6.b) one finds that the $\left\{a_{n}\right\}$, and the $\left\{a_{n}{ }^{\prime}\right\}$ are subjected to the same recurrence rules, i.e.,

$$
[2(L+n)+3] a_{n}^{\prime}+\sum_{k=0}^{n-1} a_{k}^{\prime} a_{n-k-1}^{\prime}=0, \quad n=1,2, \ldots,
$$

Now take $a_{0}{ }^{\prime}-1$, so that, according to (6.a) and (9) one has

$$
\begin{equation*}
\sigma=-1 /(2 L+3) \tag{10}
\end{equation*}
$$

and suppose, by hypothesis, that $\left|a_{k}{ }^{\prime}\right| \gtrless 1$ for $k=0,1, \ldots, n-1$. Then, by ($6 . b^{\prime}$) one obtains

$$
\begin{aligned}
\left|a_{n}{ }^{\prime}\right| & <\frac{1}{2(L+n)+3} \sum_{k=0}^{n-1}\left|a_{k}^{\prime}\right| \cdot\left|a_{n-k-1}^{\prime}\right| \\
& \gtrless \frac{n}{2(L+n)+3}<1
\end{aligned}
$$

or, in words, if $\left|a_{k}{ }^{\prime}\right| \gtrless 1$ for any k smaller or equal to $n-1$, then $\left|a_{n}{ }^{\prime}\right| \gtrless 1$. As this statement is true for $n=1$, then it is equally true by induction for any n

$$
\begin{equation*}
\left|a_{n}{ }^{\prime}\right| \gtrless 1, \quad n=0,1, \ldots \tag{11}
\end{equation*}
$$

Thus, one can write by (9), (10), and (11)

$$
\begin{equation*}
\left|a_{n}\right| ₹|\sigma|^{n+1}=\left(\frac{1}{2 L+3}\right)^{n+1}, \tag{12}
\end{equation*}
$$

According to the preceding inequalities for the $\left|a_{n}\right|$ one has the majoration rule for the series (5.a)

$$
\begin{equation*}
\left|\frac{d \alpha_{L}}{d \rho}\right|<\frac{1}{\rho} \sum_{n=0}^{\infty}\left(\frac{\rho^{2}}{2 L+3}\right)^{n+1} . \tag{13}
\end{equation*}
$$

The geometrical series on the right-hand side of (13) converges if $\rho<(2 L+3)^{1 / 2}$, so that the series ($5 . a$) converges absolutely for the same values of ρ. In practice, however, one can go beyond the limit $(2 L+3)^{1 / 2}$, because the coefficients $\left\{a_{n}{ }^{\prime}\right\}$ vanish quite rapidly with increasing n (Table I). A fortiori, the series for $\alpha_{L}(\rho)$ also converges absolutely. The same steps may be taken for the study of the convergence of the series $\beta_{L}(\rho)$ and $d \beta_{L} / d \rho$, with only one slight modification.

TABLE I
The Column Headed by n Contains the Number of Terms Kept in the Truncated Series for $\alpha_{L}(\rho)$, i.e., $\left(\rho^{2} / 2\right) \sum_{k=0}^{n-1}\left[a_{k} \rho^{2 k} /(k+1)\right]^{a}$

L	ρ	$\alpha_{L}(\rho)$	n	$j_{L}(\rho)$
10	1	$-0.21758075 \times 10^{-1}$	3	$0.71165526 \times 10^{-10}$
30	5	-0.19902319	4	$0.42827302 \times 10^{-21}$
30	10	-0.80366138	6	$0.25120574 \times 10^{-12}$

${ }^{a}$ The term for $k=n-1$ is the first in the series satisfying the condition $\left|a_{n-1} \rho^{2 n} / 2 n\right|<10^{-8}$ because $j_{L}(\rho)$ is calculated with eight exact significant figures.

New coefficients $\left\{b_{n}{ }^{\prime}\right\}$ may be introduced, defined by the relations

$$
\begin{equation*}
b_{n}=b_{n}{ }^{\prime} \sigma^{n \mid 1}, \quad n=0,1, \ldots \tag{14}
\end{equation*}
$$

and, consequently, the $\left\{b_{n}\right\}$ and $\left\{b_{n}{ }^{\prime}\right\}$ satisfy the same recurrence rules (7.b).
Suppose now $b_{0}{ }^{\prime}$ and σ are taken, respectively, equal to 1 and $1 /(2 L-1)$ (see (7.a)). Can it be proved that $\left|b_{n}{ }^{\prime}\right| \gtrless 1$ for any n by a method of induction analogous to the one used in obtaining the same inequalities for the $\left\{a_{n}{ }^{\prime}\right\}$?

As it will be seen below, it cannot, since the proof for the $\left\{a_{n}{ }^{\prime}\right\}$ requires $|n /[2(L+n)+3]|<1$ for any n. But the same is not true for the corresponding
ratio for the $\left\{b_{n}{ }^{\prime}\right\}$, i.e., $|n /[2(L-n)-1]|$ (see (7.b)), which exceeds unity for any n in the interval $\frac{1}{3}(2 L-1)<n<2 L-1$.

However, $b_{0}{ }^{\prime}$ can be put equal to $1-\epsilon$, where ϵ is a small positive quantity $(0 \gtrless$ $\epsilon<1$) calculated in such a way that $\left|b_{n}{ }^{\prime}\right| \gtrless 1$ is true for any n in the interval $0 \gtrless$ $n \gtrless 2 L-2$. Then, by mathematical induction, this statement must be true for any n in the interval $0<n<+\infty$ and one has, according to (14)

$$
\begin{equation*}
\left|b_{n}\right| \gtrless\left[\frac{1}{(1-\epsilon)(2 L-1)}\right]^{n+1}, \quad n=0,1, \ldots \tag{15}
\end{equation*}
$$

Thus, one obtains for the majoration of $\left|d \beta_{L} / d \rho\right|$ the geometrical series

$$
\begin{equation*}
\left|\frac{d \beta_{L}}{d \rho}\right| \gtrless \frac{1}{\rho} \sum_{n=0}^{\infty}\left[\frac{\rho^{2}}{(1-\epsilon)(2 L-1)}\right]^{n+1} \tag{16}
\end{equation*}
$$

which converges for any $\rho<[(1-\epsilon)(2 L-1)]^{1 / 2}$. The series $(5 . b)$ for $d \beta_{L} / d \rho$ and a fortiori its integral series (8.b) for $\beta_{L}(\rho)$ are, then, absolutely convergent for such values of ρ. In practice, however, the convergence goes beyond the limit ($2 L-1)^{1 / 2}$ (Tables II and III).

TABLE II
The Column Headed by \boldsymbol{n} gives the Number of Terms Maintained in the Truncated Series for $\beta_{L}(\rho)$, i.e., $\left(\rho^{2} / 2\right) \sum_{k=0}^{n-1}\left[b_{k} \rho^{2 k} /(k+1)\right]^{a}$

L	ρ	$\beta_{L}(\rho)$	n	$n_{L}(\rho)$
10	1	$0.26356718 \times 10^{-1}$	3	0.67221501×10^{9}
30	5	0.21266010	4	$0.77607176 \times 10^{19}$
30	10	0.86060835	7	$0.69083186 \times 10^{10}$

[^0]TABLE III
The Truncated Series for $d \beta_{L} / d \rho\left(=\rho \sum_{k=0}^{n-1} b_{k} \rho^{2 k}\right)$ is Calculated with n Terms, This Number Being Shown in the Column Headed by n^{a}

L	ρ	$d \beta_{L} / d \rho$	n	$\rho /(2 L)$
10	1	$0.52795680 \times 10^{-1}$	4	0.050
30	5	$0.85385653 \times 10^{-1}$	4	0.083
30	10	0.17486921	7	0.167

${ }^{a}$ The term for $k=n-1$ is the first obeying the inequality $\left|b_{n-1} p^{2 n-1}\right|<10^{-8}$.

The $\left\{b_{n}{ }^{\prime}\right\}$ also decrease rapidly with increasing n.
A good test for the convergence of the series for $d \beta_{L} / d \rho$ (and consequently, for $\alpha_{L}(\rho)$ and $\left.\beta_{L}(\rho)\right)$ is to compare an approximate solution to $d \beta_{L} / d \rho$ and the calculated series for the same quantity. Such a solution is easily obtained from differential Eq. (4.b) for $d \beta_{L} / d \rho$. By neglecting the small terms $d^{2} \beta_{L} / d \rho^{2}$ and $\left(d \beta_{L} / d \rho\right)^{2}$ and retaining the term with the large coefficient $(2 L) / \rho$, one obtains $d \beta_{L} / d \rho \simeq \rho /(2 L)$.

Table III gives numerical values of the series for $d \beta_{L} / d \rho$ as well as the corresponding values of its approximate solution $\rho /(2 L)$. As expected they are close to one another.

Relations (9) between the a_{n} and the $a_{n}{ }^{\prime}$, and (14), between the b_{n} and $b_{n}{ }^{\prime}$, may serve the practical purpose of calculating the series for $\alpha_{L}(\rho)$ and $\beta_{L}(\rho)$ as well as their first derivatives.

Take, for instance, (9) and redefine σ as $1 / \sigma=\rho^{2}$. Therefore $a_{0}{ }^{\prime}=-\rho^{2} /(2 L+3)$ and one obtains

$$
\begin{aligned}
\frac{d \alpha_{L}}{d \rho} & =\frac{1}{\rho} \sum_{n=0}^{\infty} a_{n}^{\prime} \\
\alpha_{L} & =\sum_{n=0}^{\infty} \frac{a_{n}^{\prime}}{2(n+1)}
\end{aligned}
$$

Finally all the calculations were performed in the Coimbra University SIGMA 5 XEROX computer, using a double-precision FORTRAN-IV programme.

References

1. P. de A. P. Martins, J. Computational Phys. 25 (1977), 182-193.

Received: October 6, 1976

[^0]: ${ }^{a}$ The term for $k=n-1$ is the first in the series that satisfies the condition $\left|b_{n-1} \rho^{2 n} / 2 n\right|<10^{-8}$ because $n_{L}(\rho)$ is calculated with eight exact significant figures.

