Note

Determination of Spherical Bessel's Functions of an Order Larger than the Argument

The ideas developed in Section 6 of Ref. [1] for the study of the behavior of $j_L(\rho)$ and $n_L(\rho)$ at the origin and for $L \gg \rho$ suggest a direct determination of these functions for $L \gg \rho$.

Consider the radial equation

$$\left[\frac{d^2}{d\rho^2} + \left(1 - \frac{L(L+1)}{\rho^2}\right)\right] u_L(\rho) = 0$$
 (1)

of which

$$f_L(\rho) = \rho j_L(\rho), \qquad g_L(\rho) = \rho n_L(\rho) \tag{2}$$

are respectively the regular and the irregular solutions. For $L \gg \rho$ define $\alpha_L(\rho)$ and $\beta_L(\rho)$ by the equations

$$f_L(\rho) = \frac{\rho^{L+1}}{(2L+1)!!} \exp[\alpha_L(\rho)], \qquad g_L(\rho) = \frac{(2L+1)!!}{2L+1} \left(\frac{1}{\rho}\right)^L \exp[\beta_L(\rho)]$$
(3)

and substitute $f_L(\rho)$ and $g_L(\rho)$ into (1). One has

$$\frac{d^2\alpha_L}{d\rho^2} + \left(\frac{d\alpha_L}{d\rho}\right)^2 + \frac{2(L+1)}{\rho}\frac{d\alpha_L}{d\rho} + 1 = 0, \qquad (4.a)$$

$$\frac{d^2\beta_L}{d\rho^2} + \left(\frac{d\beta_L}{d\rho}\right)^2 - \frac{2L}{\rho}\frac{d\beta_L}{d\rho} + 1 = 0.$$
(4.b)

Nonlinear differential Eqs. (4) show that $\alpha_L(\rho)$ and $\beta_L(\rho)$ are even functions of ρ . Take, then, the developments

$$\frac{d\alpha_L}{d\rho} = \sum_{n=0}^{\infty} a_n \rho^{2n+1}, \qquad (5.a)$$

$$\frac{d\beta_L}{d\rho} = \sum_{n=0}^{\infty} b_n \rho^{2n-1}, \qquad (5.b)$$

and substitute (5.a) and (5.b) respectively, into (4.a) and (4.b). One has, by equating to zero the coefficients of the different powers of ρ in (4.a) and (4.b), the recurrence relations for the $\{a_n\}$ and $\{b_n\}$

$$a_0 = -1/(2L+3),$$
 (6.a)

$$[2(L+n)+3] a_n + \sum_{k=0}^{n-1} a_k \cdot a_{n-k-1} = 0, \qquad (6.b)$$

Copyright © 1977 by Academic Press, Inc. All rights of reproduction in any form reserved.

ISSN 0021-9991

and

$$b_0 = 1/(2L - 1),$$
 (7.a)

$$[2(L-n)-1] b_n - \sum_{k=0}^{n-1} b_k b_{n-k-1} = 0.$$
 (7.b)

Thus, putting the integrating constants equal to zero, one has for $\alpha_L(\rho)$ and $\beta_L(\rho)$,

$$\alpha_{L}(\rho) = -\frac{\rho^{2}}{2(2L+3)} - \frac{\rho^{4}}{4(2L+5)(2L+3)^{2}} - \frac{\rho^{6}}{3(2L+7)(2L+5)(2L+3)^{3}} - \cdots, \qquad (8.a)$$

$$\beta_L(\rho) = \frac{\rho^2}{2(2L-1)} + \frac{\rho^4}{4(2L-3)(2L-1)^2} + \frac{\rho^6}{3(2L-5)(2L-3)(2L-1)^3} + \cdots .$$
(8.b)

The series (8) give to $j_L(\rho)$ and $n_L(\rho)$ the correct behavior at the origin and for $L \gg \rho$, if (2) and (3) are taken into account (see Ref. [1]).

It is worth noting that the developments (8) for $\alpha_L(\rho)$ and $\beta_L(\rho)$ are series absolutely convergent for given values of ρ and L.

Take the series for $d\alpha_L/d\rho$ and consider a new set of coefficients $\{a_n'\}$ related to the $\{a_n\}$ by the definitions

$$a_n = a_n' \sigma^{n+1}, \quad n = 0, 1, ...,$$
 (9)

 σ being a constant to be specified below. Introducing these relations in (6.b) one finds that the $\{a_n\}$, and the $\{a_n'\}$ are subjected to the same recurrence rules, i.e.,

$$[2(L+n)+3] a_{n}' + \sum_{k=0}^{n-1} a_{k}' a_{n-k-1}' = 0, \qquad n = 1, 2, ..., \qquad (6.b')$$

Now take $a_0' = 1$, so that, according to (6.a) and (9) one has

$$\sigma = -1/(2L+3) \tag{10}$$

and suppose, by hypothesis, that $|a_k'| \leq 1$ for k = 0, 1, ..., n - 1. Then, by (6.b') one obtains

$$|a_{n}'| \ll \frac{1}{2(L+n)+3} \sum_{k=0}^{n-1} |a_{k}'| \cdot |a_{n-k-1}'|$$

 $\ll \frac{n}{2(L+n)+3} < 1,$

195

or, in words, if $|a_k'| \ll 1$ for any k smaller or equal to n - 1, then $|a_n'| \ll 1$. As this statement is true for n = 1, then it is equally true by induction for any n

$$|a_n'| \ll 1, \quad n = 0, 1, \dots$$
 (11)

Thus, one can write by (9), (10), and (11)

$$|a_n| \ll |\sigma|^{n+1} = \left(\frac{1}{2L+3}\right)^{n+1},$$
 (12)

According to the preceding inequalities for the $|a_n|$ one has the majoration rule for the series (5.a)

$$\left|\frac{d\alpha_L}{d\rho}\right| \ll \frac{1}{\rho} \sum_{n=0}^{\infty} \left(\frac{\rho^2}{2L+3}\right)^{n+1}.$$
(13)

The geometrical series on the right-hand side of (13) converges if $\rho < (2L + 3)^{1/2}$, so that the series (5.a) converges absolutely for the same values of ρ . In practice, however, one can go beyond the limit $(2L + 3)^{1/2}$, because the coefficients $\{a_n'\}$ vanish quite rapidly with increasing *n* (Table I). A fortiori, the series for $\alpha_L(\rho)$ also converges absolutely. The same steps may be taken for the study of the convergence of the series $\beta_L(\rho)$ and $d\beta_L/d\rho$, with only one slight modification.

TABLE I

The Column Headed by *n* Contains the Number of Terms Kept in the Truncated Series for $\alpha_L(\rho)$, i.e., $(\rho^2/2) \sum_{k=0}^{n-1} [a_k \rho^{2k}/(k+1)]^{\alpha}$

L	ρ	$\alpha_L(\rho)$	n	<i>j</i> _L (ρ)
10	1	$-0.21758075 \times 10^{-1}$	3	0.71165526 × 10 ⁻¹⁰
30	5	0.19902319	4	$0.42827302 \times 10^{-21}$
30	10	-0.80366138	6	$0.25120574 \times 10^{-12}$

^a The term for k = n - 1 is the first in the series satisfying the condition $|a_{n-1}\rho^{2n}/2n| < 10^{-8}$ because $j_L(\rho)$ is calculated with eight exact significant figures.

New coefficients $\{b_n'\}$ may be introduced, defined by the relations

$$b_n = b_n' \sigma^{n+1}, \quad n = 0, 1, ...,$$
 (14)

and, consequently, the $\{b_n\}$ and $\{b_n'\}$ satisfy the same recurrence rules (7.b).

Suppose now b_0' and σ are taken, respectively, equal to 1 and 1/(2L - 1) (see (7.a)). Can it be proved that $|b_n'| \ll 1$ for any *n* by a method of induction analogous to the one used in obtaining the same inequalities for the $\{a_n'\}$?

As it will be seen below, it cannot, since the proof for the $\{a_n'\}$ requires |n/[2(L+n)+3]| < 1 for any n. But the same is not true for the corresponding

196

ratio for the $\{b_n'\}$, i.e., |n/[2(L-n)-1]| (see (7.b)), which exceeds unity for any n in the interval $\frac{1}{3}(2L-1) < n < 2L-1$.

However, b_0' can be put equal to $1 - \epsilon$, where ϵ is a small positive quantity ($0 \ll \epsilon < 1$) calculated in such a way that $|b_n'| \ll 1$ is true for any *n* in the interval $0 \ll n \ll 2L - 2$. Then, by mathematical induction, this statement must be true for any *n* in the interval $0 \ll n < +\infty$ and one has, according to (14)

$$|b_n| \ll \left[\frac{1}{(1-\epsilon)(2L-1)}\right]^{n+1}, \quad n = 0, 1, \dots$$
 (15)

Thus, one obtains for the majoration of $|d\beta_L/d\rho|$ the geometrical series

$$\left|\frac{d\beta_L}{d\rho}\right| \ll \frac{1}{\rho} \sum_{n=0}^{\infty} \left[\frac{\rho^2}{(1-\epsilon)(2L-1)}\right]^{n+1} \tag{16}$$

which converges for any $\rho < [(1 - \epsilon)(2L - 1)]^{1/2}$. The series (5.b) for $d\beta_L/d\rho$ and a fortiori its integral series (8.b) for $\beta_L(\rho)$ are, then, absolutely convergent for such values of ρ . In practice, however, the convergence goes beyond the limit $(2L - 1)^{1/2}$ (Tables II and III).

TABLE II

The Column Headed by *n* gives the Number of Terms Maintained in the Truncated Series for $\beta_L(\rho)$, i.e., $(\rho^2/2) \sum_{k=0}^{n-1} [b_k \rho^{2k}/(k+1)]^a$

L ρ		$\beta_L(\rho)$	n	$n_L(\rho)$	
10	1	0.26356718 × 10 ⁻¹	3	0.67221501 × 10°	
30	5	0.21266010	4	$0.77607176 \times 10^{19}$	
30	10	0.86060835	7	$0.69083186 \times 10^{10}$	

^a The term for k = n - 1 is the first in the series that satisfies the condition $|b_{n-1}\rho^{2n}/2n| < 10^{-8}$ because $n_L(\rho)$ is calculated with eight exact significant figures.

TABLE III

The Truncated Series for $d\beta_L/d\rho \ (=\rho \sum_{k=0}^{n-1} b_k \rho^{2k})$ is Calculated with *n* Terms, This Number Being Shown in the Column Headed by n^a

L	ρ	$deta_L/d ho$	n	ρ/(2L)	
10	1	0.52795680 × 10 ⁻¹	4	0.050	
30	5	$0.85385653 \times 10^{-1}$	4	0.083	
30	10	0.17486921	· 7	0.167	

^a The term for k = n - 1 is the first obeying the inequality $|b_{n-1}\rho^{2n-1}| < 10^{-8}$.

The $\{b_n'\}$ also decrease rapidly with increasing *n*.

A good test for the convergence of the series for $d\beta_L/d\rho$ (and consequently, for $\alpha_L(\rho)$ and $\beta_L(\rho)$) is to compare an approximate solution to $d\beta_L/d\rho$ and the calculated series for the same quantity. Such a solution is easily obtained from differential Eq. (4.b) for $d\beta_L/d\rho$. By neglecting the small terms $d^2\beta_L/d\rho^2$ and $(d\beta_L/d\rho)^2$ and retaining the term with the large coefficient $(2L)/\rho$, one obtains $d\beta_L/d\rho \simeq \rho/(2L)$.

Table III gives numerical values of the series for $d\beta_L/d\rho$ as well as the corresponding values of its approximate solution $\rho/(2L)$. As expected they are close to one another.

Relations (9) between the a_n and the a_n' , and (14), between the b_n and b_n' , may serve the practical purpose of calculating the series for $\alpha_L(\rho)$ and $\beta_L(\rho)$ as well as their first derivatives.

Take, for instance, (9) and redefine σ as $1/\sigma = \rho^2$. Therefore $a_0' = -\rho^2/(2L+3)$ and one obtains

$$\frac{d\alpha_L}{d\rho} = \frac{1}{\rho} \sum_{n=0}^{\infty} a_n',$$
$$\alpha_L = \sum_{n=0}^{\infty} \frac{a_n'}{2(n+1)},$$

Finally all the calculations were performed in the Coimbra University SIGMA 5 XEROX computer, using a double-precision FORTRAN-IV programme.

References

1. P. DE A. P. MARTINS, J. Computational Phys. 25 (1977), 182-193.

RECEIVED: October 6, 1976

PEDRO DE A. P. MARTINS Departamento de Física Universidade de Coimbra Portugal

198